
Journal of Statistical Physics, Vol. 61, Nos. 3/4, 1990

Fully Parallel Code for Monte Carlo Simulation

T. J. P. Penna ~ and P. M. C. de Oliveira 1

Received May 3, 1990; final June 1, 1990

We present a fully parallel version of Monte Carlo simulation of the Ising model
using the Metropolis algorithm. In the 3-dimensional version the performance
can be enhanced by a factor >20 in 16-bit word processors relative to other
multispin codes. This factor could be further increased if implemented in 64-bit
word computers.

KEY WORDS: Multispin code; Monte Carlo method; phase transitions.

1. I N T R O D U C T I O N

Monte Carlo simulations are widely used to study statistical models. A
review of applications of this method in statistical physics can be found in
refs. 1. The main difficulty found in the use of Monte Carlo simulations is
the limitation of computers. This limitation can be overcome by improving
the hardware, the software, or still increasing the information obtained
from a simulation. Dedicated machines and vector computers have been
developed allowing simulations in large systems. The multispin coding
technique (2) is an important advance in software, due to memory saving
and increasing speed characteristics.

In this paper, we present a new algorithm for Monte Carlo simulation
for two- and three-dimensional Ising-spin systems, using the multispin
coding technique in its total capacity, bypassing the step of generating one
random number and comparing it with a Boltzmann factor for each spin
sequentially. Our code has been tested in a 16-bit word processor, but the
advantage, in comparison with traditional multispin codes, can be better
for larger word sizes. In the next section we present the three-dimensional

1 Instituto de Fisica, Universidade Federal Fluminense, C.P. 100296, 24000-Niter6i, RJ,
Brazil.

933

00224715/90/110o-0933506.00/0 �9 1990 Plenum Publishing Corporation

934 Penna and de Oliveira

version of another fast code. (3) In Section 3 we show how to build suitable
random numbers for full parallelization.

A full copy of our C-program can be requested from bitnet PMCO at
LNCC. The C-compilers are the best ones developed for microcomputers.
This code can be easily translated to older languages, such as FORTRAN.
We hope that this code can be soon implemented on a vectorized
computer.

2. U P D A T I N G T H E S P I N S

For the sake of simplicity, let us consider a cubic lattice. In this geometry
each spin has six neighbors. We consider the following Hamiltonian for the
]sing model:

H=2J ~ cri| (1)
(0>

where J is the coupling strength, the summation is taken over the nearest
neighbor pairs, ai can assume the values 0 or 1 and represents the spin in
the ith site, and | means the XOR (eXclusive OR) logical operation. In
this representation the local energy can assume the values 0, 1, 2,..., 6,
taking 2J as energy unit. In the Monte Carlo simulation of the Ising
dynamics the slowest step is the Metropolis (4) algorithm that introduces the
temperature effect. For each spin with local energies 0, 1, and 2 we must
choose a random number (between 0 and 1) and compare it with the
corresponding Boltzmann factor

exp(-AE/kT) (2)

where T is the simulated temperature and AE is the change in energy due
to spin flip. The spin that is being tested will be flipped if the random
number is less than the Boltzmann factor. This recipe guarantees that this
factor is the probability of flipping. For the other local energies the
Boltzmann factor will be larger than 1, and thus the spins will be always
flipped.

In a previous paper, (3) we presented a new technique for storing (5~ and
updating (3) of spins for a square lattice. Here, we will extend this procedure
for the cubic lattice. In this code each bit holds one spin and the local
energy value is calculated simultaneously for 16 spins (in a 16-bit word
processor), using only bitwise operations, without need of storing it. We
divide each plane into four sublattices as defined in ref. 5. We will describe,
step by step, the procedure of determination of local energies. We used the
following variables: s holds the spins which are being tested, ij are its

Fully Parallel Code for Monte Carlo Simulat ion 935

neighbors (j = 1,..., 6), and the symbols A, | V, and -a mean the AND,
XOR, OR, and N O T bitwise operations. The variable imp defined as

imp = il | i2 | is @ i4 @ is @ i6 (3)

will hold 1-bits at sites with an odd number of 1-bit neighbors. We also
define

e 3 = [(i~ | A (i3 | a (i s | V E(i i | A (i2 | A (i3 |

V [(i2 | i3) A (i4 | A (i6@i l)] (4)

which will hold 1-bits at sites with local energy 3 (it is independent of the
value of the central spin being tested). Other simple expressions can be
constructed for 0 and 6 local energy cases, using the following definitions:

upO= - l i 1 A -7i 2 A --7i 3 A -7i 4 A -ai5 A --7i 6 (5)
and

up6 = il A i2 A i3 A i 4 A is A i 6 (6)

where upO holds 1-bits at sites with all neighbors assuming 0-value and
analogously for up6 all neighbors assuming 1-value. The variables e0 and
e6 will be defined as

eO = (up6 A S) V (upO A -as) (7)

e6 = (upO A S) V (up6 A 7 S) (8)

Other auxiliary variables can be constructed:

up4 = {[(i~ v i:) A (i3 v i4)] V [(i~ v i2) A (i5 V i6)]

V [(i3 V i4) A (is V i6)] }

A {(il A i2) V (i3 A i4) V (is A i~)} A -aimp A -aup6 (9)

up5 = imp A {(il A i2 a i3 A i4) V (is a i 6 A il a i2)

V (is A i 4 A is A i6)} (10)

up2 = ~ i m p A -aup4 /X ~ e 0 A ~ e 6 (11)

upl = i m p A -ae3 A 7 u p 5 (12)

Starting from (9) (12) we can define, finally,

e5 = (upl A S) V (up5 A -aS) (13)

el = (up5 A S) V (upl A -as) (14)

e4 = (up2 A S) V (up4 A 7 S) (15)

e2 = (up4 A S) V (up2 A -as) (16)

936 Penna and de Oliveira

Although we have no need of evaluating the spins with local energies 3 6,
we did it, and thus the performance cited here that we describe can be still
improved. We can define the variable t as

t = - n (e 0 v el v e2) (17)

which will hold 1-bit at sites to be flipped, a priori, i.e., those with local
energies 3-6. It remains to choose the spins with local energies 0, 1, and 2
that must be flipped following the Metropolis algorithm, according to
random numbers.

The modification introduced in this paper is that we used only one
suitable random number for each word of each local energy (e0, el, e2),
instead of one random number for each spin as has been done before/2'3~
Due to this procedure, the larger the computer word size, the larger the
time saving. The main idea is: if we succeed in generating suitable random
numbers with random bits following predefined probabilities to assume
the value 1 (we refer to this probability as concentration hereafter) equal to
the Boltzmann factors for the simulated temperatures, we can determine
all the spins with local energy 2, for example, which must be flipped, with
only one AND operation between the word e2 and this random number.
Moreover, this procedure avoids the use of comparisons, which are the
slowest operations, and holds the full paralMization of our algorithm.
According to the Hamiltonian (1), the Boltzmann factors will be

ex2 -= exp (- 4J/k T) (18)

exl = exp(- 8J/kT) = ex22 (19)

exO = exp(- 12J/kT) = ex23 (20)

With two random numbers generated with concentration ex2, we can
construct another random number with concentration exl with only one
AND operation between these numbers. The AND operation between two
numbers with concentration x of bits in state 1 will generate another
number with concentration x 2. With other three random numbers and two
AND operations, we can construct a fourth random number according to
the factor (20). Although this procedure seems to be quite simple, it is not.
In the next section we describe how to construct those suitable random
numbers.

3. BUILDING THE R A N D O M N U M B E R

One of the fastest random number generators is the multiplication by
65,539 used in ref. 3 with bitwise operations:

r = r + (r ~ 1)+ (r ~ 16) (21)

Fully Parallel Code for Monte Carlo Simulation 937

where r ~ b means the shift of word r by b bits to the left and it is the same
as r . 2 b. The number r is a pseudorandom number, but its bits are not. The
first bit (or bit 0) always must be 1, in order to avoid that one bit in 0 state
propagating along all bits of the word r, after a few iterations. The second
bit will be alternately in 0 and 1 states. Due to this restriction, this random
number generator cannot be used for the procedure above because it leads
to undesired correlations. We checked the repeating period of each bit in
long integer (32-bit integer) r, i.e., we measured the cycle of each bit. These
periods have a simple formation rule for bits 3, 4,..., 31: the period of the
bit n is 2n-1; thus, the more to the left is the bit position in the word, the
larger is the repeating period. Due to limitations of our microcomputer, we
stored the lattice in short integers (16-bit integers). We used the last eight
bits of two numbers generated by (21) in order to construct one 16-bit
number rs, using the following procedure:

r = r + (r ~ 1)+ (r ~ 16)

rl =r~>24
(22a)

r = r + (r ~ l) + (r ~ 1 6)

r s = r l v ((r > > 2 4) ~ 8)

where r and rl are long and rs is a short integer, in our case, and r >> b
means the shift of word r by b bits to the right. To accept this new random
number with long cycle, it remains to test the correlation between each pair
of bits. We did it and found that all off-diagonal elements of the correlation
matrix are statistically null, i.e., less than 1/,,fN, where N is the number of
iterations. This random number generator was used here in order to realize
a more realistic comparison between this code and the other one, (3) but
other random numbers generators (see, for instance, ref. 6) can be tested,
improving the performance. We test another, faster procedure to generate
suitable 16-bit random words from two independent 32-bit seeds r and rl,
and a third auxiliary one r2:

r = J r + (r~ 1)+ (r~ 16)] |

r l = r l + (r l ~ 1)+ (rl ~ 16)
(22b)

r2= (rl | >> 15

rs = r2

For the sake of comparison, the procedure (22b) generates 106 random
numbers in 22 sec, while (22a) takes 41 sec in our 80286-based micro-
computer running at 12 MHz. Moreover, the (22b) cycles are longer than

938 Penna and de Oliveira

those of (22a). At this moment, we have created a random number with
uncorrelated bits, each one having equal probability of assuming the
0 or 1 state, i.e., concentration equal to 0.5. We can just simulate the
temperature in which the Boltzmann factor ex2 is 0.5. It is obvious that this
is not interesting, because we want to simulate any temperature.

The trick used to change the concentration of 1-bits in a word is also
very fast because we used only binary operations. Let us consider, a priori,
two numbers with concentrations x and y. One AND operation between
these numbers will generate another with concentration xy, because the
AND operation gives 1 as a result if and only if both operands a r e 1. The
OR operation will give as a result a number with concentration 1 , (1 - x)
(1 - y). The OR operation gives a result 0 if and only if both operands are
0. The XOR operation will give as a result a number with concentration
x (1 - y) + y (1 - x) . We have tested the validity of these rules for more
than one million iterations and they were statistically confirmed. Using
these properties, we can construct several concentrations and temperatures.
Let us consider, for example, the Boltzmann factor ex2 = 0.25 or J / k T , ~ 0.35.
For construction of a short integer random number re2 we used two
random numbers, rsl and rs2 generated by (22a) or (22b):

re2 = rsl /x rs2 (23)

After this step we can do

t = t v (e2 A re2) (24)

With this operation we introduce l-bits in the word t at positions
corresponding to local-energy-2 sites, with probability 0.25, as required by
the Metropolis algorithm. We used four random numbers generated by
(21) to construct re2. To construct rel with concentration exl - - -ex22 we
use eight numbers. For reO with concentration exO = ex23, 12 numbers are
necessary. For the two-dimensional case the gain is increased because we
need not generate these last 12 numbers. For the sake of time saving, we
can generate these 12 numbers at the beginning, using 4 of them to create
re2, the other 8 for re1, and all 12 for reO. There is no danger of introducing
correlations, because reO, rel , and re2 will influence distinct bits in the
word t when composed with e0, el, and e2, respectively; see Eq. (26) below.
We tried also to construct reO, rel, and re2 by combining only six random
numbers rs generated by (22a), but we abandoned this idea due to the
correlations introduced in this process. In this temperature, we increased
the performance of ref. 3 by a factor 3. Had this code been implemented in
64-bit processor, this factor would be larger than 12. In combination with
the factor 8 obtained in the same reference, we can obtain a net gain by a

Fully Parallel Code for Monte Carlo Simulation 939

factor 10 2, at least, compared with other multispin codes. (2) We can
simulate other temperatures close to J / k T = 0.35 if we modify the number
rsl with the following procedure:

rsl = r s l v (1,~ (rs2 A 15)) (25)

Using Eq. (23), we find that re2 will have concentration equal to 0.266 or
J / k T ~ 0 . 3 3 . The inner expression is necessary in order to add 1-bit in a
random position. When the Metropolis algorithm step finishes, we have

t = t v (e2 A re2) v (el A re l) v (eO A reO) (26)

and t will hold 1-bits at all sites that must be spin flipped. The final updating
is done with one XOR operation between s (the word being tested) and t.

4. THE RESULTS

The thermodynamic quantities of the 3-dimensional ferromagnetic
Ising model shown here reproduce the original results. They were extracted
in order to test the fully-parallel algorithm. We simulated 323 spins. The
rule employed to simulate close to the critical temperature for spins with
local energy 2 was

re2 = (rsl A rs2) v (rs3 A rs4) (27)

where rsi are numbers generated by procedure (22a), i.e., concentration 0.5.
The corresponding Boltzmann factor is ex2=0.4375 or J / k T = 0.20667.

1 , 0 -

~ o . 5

A
A

A

9

A

0.0 A]]
0,0 O, 1 0/2 0/3 0/4 0.5 0.6

J / k , T

Fig. I. Results for the spontaneous magnetization (Im I).

822/61/3-4-28

940 Penna and de Oliveira

4.0

<3
2 .o

A

0.0
0.0 0.'1

Fig. 2.

A

A
A

0.2 0.~3 014 0.5 0.6
J/kT

Results for the susceptibility.

The phase transition point is estimated numerically to be J / k T = 0.22165. (7)
Closer temperatures were obtained by modifying the rsi numbers through

r s l = r s l /x -7(1<(rs2 a 15)) (28)

The results for spontaneous magnetization and susceptibility are shown in
Figs. 1 and 2, extracted from different simulations for each temperature.
We performed 100,000 Monte Carlo steps after 1000 steps without
measurement for thermalization, for each temperature.

For performance comparison, in our best case, including the energy
and magnetization calculus at every step, the updating rate was 6 x 104
spins/sec, in an 80286-processor-based microcomputer running at 12 MHz.

5. S U M M A R Y

In this paper we present a new strategy for Monte Carlo simulation
without generating one random number for each spin in the Metropolis
algorithm. Instead, we generate random numbers with uncorrelated
random bits with different concentrations in order to simulate different
temperatures. We increase this performance by a factor of 20 relative to
original multispin codes, but this factor could be considerably increased if
this procedure is implemented in 64-bit processors. Another important
feature .of this procedure is that it can be applied also for stochastic cellular
automata.(S)

Fully Parallel Code for Monte Carlo Simulation 941

A C K N O W L E D G M E N T S

W e are grateful to Prof. J. A. e Souza for r ead ing the m a n u s c r i p t a n d

offering sugges t ions for its i m p r o v e m e n t . This w o r k was par t i a l ly s u p p o r t e d
by Braz i l i an agencies F I N E P , F A P E R J , C A P E S , a n d C N P q .

R E F E R E N C E S

1. K. Binder, ed., Monte Carlo Methods in Statistical Physics, 2rid ed. (Springer-Verlag,
Berlin, 1986); Applications of Monte Carlo Methods in Statistical Physics, 2nd ed.
(Springer-Verlag, Berlin, 1987).

2. R. Zorn, H. J. Herrrnann, and C. Rebbi, Comp. Phys. Comm. 23:337 (1981); L. Jacobs and
C. Rebbi, J. Comp. Phys. 41:203 (1981); C. Kalle and V. Winkelmann, J. Stat. Phys. 28:639
(1982).

3. P. M. C. de Oliveira and T. J. P. Penna, Rev. Bras. Ffs. 18:502 (1988).
4. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem.

Phys. 21:1087 (1953).
5. H. J. Herrmann, J. Stat. Phys. 45:145 (1986).
6. S. Kirkpatrick and E. P. Stoll, J. Comp. Phys. 40:517 (1980).
7. G. Pawley, D. Wallace, R. Swendsen, and K. Wilson, Phys. Rev. 29:4030 (1984).
8. W. Kinzel, Z. Phys. B 58:229 (1985).

Communicated by D. Stauffer

